

Dorsal Root Ganglion Stimulators at a Military Treatment Facility (MTF): Self-reported Opioid Use and Disability at 3 Month Follow-Up

Walter Reed **National Military Medical Center**

Gabriel Kim, MD, MSE;¹ Connie Kurihara, RN; Edward Park, MD;¹ Melanie Johansson, MD;¹ Christopher Spevak, MD, JD;¹ David Reece, DO;¹ Laura Wandner, PhD^{1,2}

Affiliations: ¹Walter Reed National Military Medical Center; ²National Institute of Neurological Disorders and Stroke (NINDS/NIH)

Disclaimer: The views expressed in this poster are those of the authors and do not reflect the official policy of the Department of Army/Navy/Air Force, Department of Defense, or the U.S. Government.

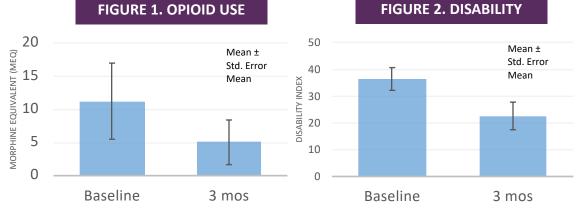
INTRODUCTION

- Dorsal root ganglion (DRG) stimulator is a novel neuromodulation technique utilized for chronic neuropathic pain associated with complex regional pain syndrome (CRPS) and/or peripheral causalgia in the groin and lower limb.
- CRPS may be characterized by continuing regional pain, allodynia, and hyperalgesia, and may have abnormal sensory motor, vasomotor, and trophic findings.
- CRPS is associated with sleep disturbance, functional impairment, and suicidal ideation.
- In light of the opioid epidemic, it's important to understand how patients are using opioids and how pain impacts function and quality of life (QOL).
- The objective of this quality improvement project was to determine whether self-reported opioid use and perceived disability changed in patients with DRG stimulators at 3-month follow-up.

METHODS

- SCS Cohort at an MTF includes patients who completed a DRG stimulator trial and permanent implant in 2018-2020.
- This project examined the DRG stimulator sub-sample of the Cohort: patients for whom we had demographics data (N=21), baseline and 3-month follow-up data on self-reported opioid use (N=11) and disability assessment (N=9).
- Frequency was calculated for demographic data (age, work status, diagnosis, and neuropathic component).
- Paired samples t –test was performed for opioid use and disability at baseline and 3 month follow up.

TABLE 1. DEMOGRAPHIC DATA (SUBSET)


Service				
	Frequency	Percent		
Army	3	14.3		
Navy	5	23.8		
Marine	3	14.3		
Airforce	7	33.3		
None	3	14.3		
Total	21	100.0		

Work Status			
	Frequency	Percent	
Active Duty	10	47.6	
Retired	8	38.1	
Dependent	3	14.3	
Total	21	100.0	

Diagnosis				
	Frequency	Percent		
Complex Regional	8	38.1		
Pain Syndrome				
Groin pain	4	19.0		
Illioinguinal Nerve	1	4.8		
Entrapment				
Low Back Pain	1	4.8		
Neuropathy	3	14.3		
FBSS	1	4.8		
Pain in knee	1	4.8		
Pelvic pain	2	9.5		
Total	21	100.0		

Diagnocia

FIGURE 1. OPIOID USE

RESULTS

- Majority of patients were male (61.9%), active duty (47.6%), and were experiencing a neuropathic component to their pain (81.0%).
- Mean age was approximately 45.9 years.
- Top 3 diagnoses are CRPS, groin pain, and neuropathy.
- Patients had a reduction in morphine equivalent (MEQ) from baseline (mean=11.24, SD=19.05) to 3-months (mean=5.03, SD=11.17).
 - · Paired samples t-test found this difference approached statistical significance, t(10)=1.79, p=0.103.
- Results also suggest a reduction in perceived disability from baseline (mean=36.33, SD=12.70) to 3-months (mean=22.56, SD=15.42).
 - · Paired samples t-test found this difference approached statistical significance, t(8)=1.89, p=0.095.
- None of the patients had explant of their DRG stimulators.

CONCLUSION

- Preliminary analyses suggest that patients who underwent DRG stimulation may have a reduction in MEQ and perceived disability at 3-months post-implantation.
- The differences were not statistically significant. However, this may may be attributed to the infrequent use of DRG stimulation.
- These findings may suggest that DRG stimulator implantation could be an important tool in combating the opioid epidemic and improving the patient's QOL within the military healthcare system.
- More robust data collection is necessary to determine the effectiveness of DRG stimulators.