Peripheral nerves cross-sectional area for the diagnosis of diabetic polyneuropathy: A meta-analysis of unltrasonographic measures

Nastaran Maghbouli MD-MPH, Saeed Pourhassan MD

Tehran University of Medical Sciences

Background

As complimentary technique, nerves Ultrasonography (US) is a novel method that can assist the physician in localization and differential diagnosis of neuropathy in challenging cases. Although nerve ultrasound is commonly utilized for entrapment mononeuropathies and demyelinating neuropathies, data on the usefulness of US for diabetic polyneuropathies are limited¹.

It has been hypothesized that in individuals with diabetes mellitus the peripheral nerve is swollen due to sorbitol over-accumulation². Additionally growing evidence supported electrodiagnostic study of diabetes induced neuropathy as a method having some challenges.

Objectives

To examine the performance of sonographic crosssectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN).

Methods

Data Sources

Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020.

Study Selection

Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included.

Data Extraction

Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement.

Results

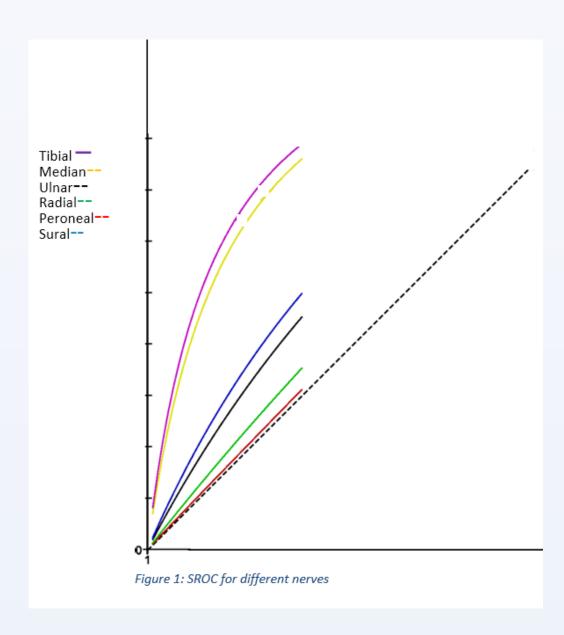

Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from 5 studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and midarm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from 2 studies for Sural nerve were .78 (95% CI, .68–.89), and .68 (95% CI, .53–.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve.

Table 1: Characteristics of studies

Study	Author, country	Number of patients	Nerves	Sensitivity/ specificity	ROC	CSA (cross- section area)	Regression	correlation
1	Agirman et al,Turkey	63	Median-Ulnar	+	+	+	-	-
2	Riazi et al, Canada	55	Tibial	+	+	+	+	-
3	Arumugam et al, Malaysia	100	Ulnar. Median. Radial tibial.sural.proneal	-	-	+	-	+
4	Breiner et al, Canada	100	all	+	-	+	-	-
5	Webb et al, USA	25	Peroneal. Sural	-	-	+	-	+ (with age)
6	Singh et al, India	75	Tibial	-	-	+	-	_
7	Liu et al, China	100	Sural	+	+	+	-	-
8	Kang et al, Korea	20	All	+	+	+	-	-
9	Lee et al, China	24	Tibial	-	-	+	-	-
10	Pitarocoili et al, Germany	44	All	-	-	+	-	+ (with EDx)
11	Borire et al, UK	37	Median-Ulnar- Tibial-Peroneal	-	-	+	-	-

Conclusion

The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24mm², this value can be considered as a cutoff point for diagnosing DPN.

References

- ¹ Telleman JA, Grimm A, Goedee S, Visser LH, Zaidman CM. Nerve ultrasound in polyneuropathies. Muscle & nerve. 2018 May;57(5):716-28.
- ² Singh KP, Gupta K, Kataria N, Arora V, Nagpal N. High-resolution ultrasonography of the sural nerve in diabetic peripheral neuropathy. Journal of Ultrasonography. 2020 Jul;20(81):e83.