Compressive Spinal Cord Injury Secondary to Hematoma: Systematic Review and Contrast with Traumatic Spinal Cord Injury

Edward Pingenot OMS-II¹, Lucinda Kurzava Kendall MS, OMS-IV², Gretchen Ferber MD, MFA³, Nicholas S. Race MD, PhD³ 1 Kansas City University, College of Osteopathic Medicine 2 Touro University California, College of Osteopathic Medicine 3 University of Pittsburgh Medical Center, Department of Physical Medicine and Rehabilitation

Background and Objectives: Non-traumatic spinal cord injuries (SCIs) include heterogeneous etiologies often lumped together for research comparisons with traumatic SCI. SCI secondary to hematoma is one such non-traumatic etiology; however, hematomas secondary to procedural complications are typically classified as traumatic by Model Systems criteria. While the compression secondary to a hematoma does exert a mechanical force on the spinal cord and can be considered a trauma, the degree and rate of compression compared to conventional impactacceleration traumatic SCI likely exert different pathophysiologic responses, functional consequences, and expected recovery trajectory / outcomes. We aim to more precisely characterize features unique to SCI secondary to hematomas including subtypes, demographics, risk factors and comorbidities, prognostic factors, and outcomes compared to better-studied traumatic SCI.

Design: Systematic review; PRISMA guidelines. Two investigators completed a comprehensive database search. Pre-determined exclusion criteria included: studies not in English, animal studies, and individual case reports or limited case series. Participants included individuals of all ages with SCI secondary to non-traumatic hematomas. Data collected: population demographics (age, sex, comorbidities/risk factors), unique clinical features, prevalence/severity of functional sequelae (motor/sensory dysfunction, neurogenic bowel/bladder, sexual dysfunction, neuropathic pain, spasticity, syrinx formation, DVT, pressure injury), functional outcomes, and psychosocial outcomes (employment, disposition, mental health).

Results: Twelve studies were included capturing 2,253 cases of hematoma-related SCI, further classified by (spontaneous. pregnancyhematoma subtype procedure-related). Differences in associated demographics and risk factors were observed both within hematoma-induced SCI (between sub-etiologies) and between hematoma-induced and traumatic SCI. Notable gaps in the literature were identified for longterm neurologic sequelae and functional outcomes from hematoma-induced SCI. We present insights into hematoma-related SCI demographics and outcomes and provide rehabilitation-specific and prognostic considerations in contrast with traumatic SCI Full details at right.

Let's talk: Clinical Features

Hematoma-induced SCI have a more insidious onset compared to traumatic SCI

- · 85% present with acute to subacute pain at level of injury
- ~40% have bladder symptoms
- Motor and sensory impairments occur in 60-90%, but are more subtle
- ~5% present atypically with headache, vomiting, cerebral edema, nystagmus, or impaired consciousness (more common in extensive hematoma; 76% span entire spinal canal)
- Location/size: cervical to upper thoracic; mean segment span 3-6 levels

Demographics & Risk Factors

Category	Diagnosis	Age	Sex	Risk Factors (RFs) & Comorbidities	Coagulopathies and Anticoagulation
	Spontaneous	Median: 52 years old	55% male 45% female	HTN 23%, 15.2% other CV RFs 5% underlying vascular malformation Majority of cases: no relevant PMHx.	44% on anticoagulation 5% with coagulopathies
Hematoma	Peri-partum Spinal Epidural	Pregnancy- related: Mean 27.9 Post-partum: Mean 29.75	100% female	 81% had no vascular risk factors or anticoagulation therapy 1 case previous spontaneous spinal epidural hematoma, 1 HTN + preeclampsia,1 case HELLP w/o HTN >50% had spinal or epidural anesthesia 	
	Procedure- related			Spinal procedure	34.5% of cases had coagulopathy
Traumatic		Mean 35.6 Mode: 19	4:1 male to female ratio	EtOH or other substance use; 25% assoc. w/alcohol use	

Outcomes and Prognosis

Diagnosis	Initial Functional Score	Follow-up Functional Score	Probability of Functional Improvement	Factors Predicting Positive Outcome	Factors Predicting Negative Outcome	Probability of Favorable Outcome
Hematoma	Frankel: A 41% B 14% C 32% D 10% E 4% A=complete	40% with recovery ≥ Frankel C; for Frankel C, D, or E, ≥ to 1 grade improvement	Frankel: A 41% B 75% C 91% D 96% E 89%	Paraplegia <24hrs Only cauda involved Location above C6 Location below L1 Frankel B-E Controversial: fewer spinal segments involved	Frankel A (complete) Neurological deficits Requiring surgery (50% unfavorable outcome, vs 18% of non-operative cases) Comorbid coagulopathy or anticoagulation	43% clinically significant recovery, 36.2% mild recovery, 20.8% minimal to no recovery or died of hematoma associated complications
Traumatic	AIS Grade: A 43% B 11% C 19% D 27% A=complete	<u>1 year f/u AIS</u> <u>Grade:</u> A 31% B 11% C 14% D 43% E 1%	A -> D progression in 1yr <5% C -> D progression much higher	Incomplete injury, particularly if motor preservation below Pinprick sparing below level of injury Timely surgical decompression	AIS A (complete) Transection or hemorrhage Negative modifiers: age (>50), obesity, # of comorbidities Level of injury: higher = less likely to be independent or to ambulate	Proportional to AIS grade Modified by comorbidities, support system, psychosocial factors

Functional Consequences

Diagnosis	Sensory Symptoms	Motor Symptoms	Ambulation/Mobility	Neurogenic Bladder
Hematoma	64% experience sensory deficits: 13% hypesthesia/hypalgesia, 45% paresthesia	89% experienced motor symptoms. Of these: 43% paraparesis 46% paraplegia 2% tetraparesis 3% tetraplegia 3% hemiplegia 3% monoparesis	41% achieved independent ambulation w/o devices 18% independent and ambulatory with aid 24% wheelchair users	42.8% experience bladder dysfunction as initial symptom o onset. No data on long-term bladder involvement
Traumatic	quantity of spinal cord ti of motor and/	neurological injury and preserved ssue. All experience some degree or sensory impairment. AlS grades above.	Overall predicted ambulation based on AlS grade: A 3%, B 50%, C 75%, D 95% Ambulation at IPR discharge (old data, longer LOS): A <1%, B 1-15%, C 28-40%, D 67-75%.	Present in 70-84% of patients

No data for: neurogenic bowel, spasticity, neuropathic pain, pressure injuries, sexual dysfunction, syrinx formation, DVT/PE, IPR LOS / functional gains, disposition, or psychosocial outcomes.

When compared to traumatic SCI, hematoma-induced SCI has unique demographics, risk factors, and different clinical presentations, though functional outcomes and prognostic data are lacking. We need to study them more.

Scan for poster

Click this box for contact and references

Conclusions

Hematoma-induced SCI is vastly understudied, particularly in areas including: rates of functional sequelae, functional outcomes, and psychosocial outcomes. Published data on the various etiologies are sporadic and imprecise. In addition, efficacy/outcomes of acute inpatient rehabilitation are not reported and rehabilitation-relevant interventions for common SCI sequelae including neurogenic bladder, neurogenic bowel, neuropathic pain, spasticity, and more have not been explored in the hematoma-induced SCI population specifically. Further study is needed to characterize prognostic features, rehabilitation considerations, and intervention efficacies to provide adequate guidance, expectant management, prognostication, and treatment development/targeting for patients who experience this type of SCI.