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Surface texture is important for haptic perception to adapt fingertip forces and 
prevent use of inadequate or excessive forces during object manipulation.1,2

Previous work has used surfaces that do not have quantifiable tactile features 
limiting our understanding of texture perception.3 In this study, we used 3-D 
printed textures of precise surface geometry to examine the mechanisms of tactile 
roughness perception and grasping behavior. The 3-D printed textures were affixed 
to the grasping surface of a precision grip instrument which measured grip and 
load forces applied during a grasp and lift manual dexterity task, to permit 
quantitative analyses of grasping behavior.

The objective of the study was to examine the extent to which object weight and 
texture parameters - texton size and wavelength - explain adaptation and 
execution of fingertip grip and load forces. 

Objectives

Introduction

We created 8 different 3-D surface textures, where the texture elements, 
Textons, were truncated cones with texton diameters (d) of 0.1, 0.3, or 0.5 mm, 
spaced at wavelengths (λ), the center-to-center distance between the texton tip 
diameters, of 0.75, 1.0, or 1.25 mm apart. Ten healthy adult subjects grasped the 
instrument grip device using bare hands. The eight different textures were used 
with the grip device weighing 250 g, 450 g, and 650 g. The grip and load forces 
were measured at a sampling rate of 400 Hz, and the grip force rates and load 
force rates were computed. 

Conclusion

• Grip force rates scaled to object loads and the parameterized textures.

• Load has a strong effect on all grasping variables, but texton size shows a linear effect 
on grip force scaling and execution, which is strongest at a wavelength of 1 mm

• These results confirm that texture information from the fingertips is coded 
independently of load information for sensorimotor integration.

• Next steps will examine the relationship between texture properties and roughness 
perception on grasping behavior.

Results
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Mean values of the variables representing grasping behavior across all subjects for the three 
weights and texton sizes (d=0.1, 0.3 and 0.5) arranged by wavelength (λ).

Note that load has a strong effect on all grasping variables. At a given load and wavelength, 
there is a general trend that as texton size increases, the log pGFR and grip force at lift 

increase. This effect appears to be strongest at a wavelength of 1 mm. 

Grip force rates scale to object load and texture before lift-off
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Representative data for λ=1 and d=0.3 from a single subject and single trial. 
The peak grip force-rates are higher for the heavier object weight.

Representative data for λ=1 and weight=250g from a single subject and single trial. The peak grip 
force-rates are higher for textures with larger texton diameters (smoother textures).

At a wavelength of 1, an increase in texton size increases the grip force rate by 12% as suggested by 
the slope (b=0.589, p<0.001). Similarly, there is linear relationship between texton size and grip 
force at lift-off, which is also the strongest when the wavelength of the surface texture is 1mm 
(b=2.387, p<0.001). These relationships are much weaker at wavelengths of 0.75 mm and 1.25 mm. 

Linear relationship between grasping behavior strongest at λ=1
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