knowledge changing life # Relationship Between Injury History and Pitching Biomechanics in Adolescent Baseball Pitchers Meghan Caballero MD¹, Shayne Fehr, MD², Cody Dziuk, BS², and Janelle A. Cross, PhD² ¹Medical College of Wisconsin Department of Physical Medicine and Rehabilitation, Milwaukee, WI, USA ²Medical College of Wisconsin Department of Orthopaedic Surgery, Milwaukee, WI, USA #### Introduction - Injuries to the elbow and shoulder are common among adolescent baseball players and are associated with extrinsic and intrinsic factors, including poor biomechanics and sports specialization - Traditional motion analysis was used to identify relationships among pitching biomechanics, pitching history, and injury patterns within a group of adolescent pitchers ## **Methods** - Data collected from 21 health adolescent (aged 15-17) pitchers - Subjects underwent one testing session to obtain health and injury history, playing experience, and motion analysis - Subjects were stratified into groups based on pain and specialization status - Motion analysis variables were statistically analyzed and compared with health and playing information ## Hypothesis - 1) Pitchers with higher elbow torque will be more likely to report elbow pain - 2) Pitchers with higher humeral internal rotation torque will be more likely to report shoulder pain - 3) Pitchers with presence of either elbow or shoulder pain will be more likely to be classified as specialized ### Results - No significant differences between groups in playing experience, injury history, biometrics or peak pitch velocity - Lead foot position at foot contact significantly different between NS (-8.5±9.4 cm) and S (6.8±11.0 cm) (p = 0.007) - Timing of max hip-to-shoulder separation angle during pitch cycle (PC) significantly different between the NS (3.4 %PC) and S (12.0 %PC) groups (p = 0.027) Table 1. T-Test between no pain and pain groups for elbow valgus torque and shoulder internal rotation torque | | NP(n=4) | P(n = 15) | p-value | |-----------|-----------------|---------------------|---------| | EVT (Nm) | 61.9 ± 9.0 | 56.8 ± 11.0 | 0.409 | | SIRT (Nm) | 58.7 ± 11.9 | 54.6 ± 11.3 | 0.538 | | nEVT | 0.45 ± 0.08 | 0.41 ± 0.06 | 0.309 | | nSIRT | 0.44 ± 0.11 | 0.40 \pm 0.07 | 0.433 | Table 2. T-Test between non-specialized and specialized groups for elbow valgus torque and shoulder internal rotation torque | | NS (n = 7) | S (n = 12) | p-value | |-------|-----------------|-----------------|---------| | EVT | 59.7 ± 8.9 | 56.8 ± 11.6 | 0.575 | | SIRT | 60.5 ± 8.7 | 52.6 ± 11.8 | 0.141 | | nEVT | 0.42 ± 0.05 | 0.42 ± 0.08 | 0.986 | | nSIRT | 0.43 ± 0.06 | 0.39 ± 0.09 | 0.308 | ## **Conclusion and Next Steps** - Few significant differences demonstrated between pain vs. no pain and specialized vs. non-specialized groups - Data adds to the growing body of literature describing adolescent pitching biomechanics - Goal: increase sample size to better characterize injury risk factors and prevent future adolescent pitching injuries ## Acknowledgements Medical College of Wisconsin Departments of Biostatistics, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, and STiKS Academy