

knowledge changing life

Relationship Between Injury History and Pitching Biomechanics in Adolescent Baseball Pitchers

Meghan Caballero MD¹, Shayne Fehr, MD², Cody Dziuk, BS², and Janelle A. Cross, PhD²

¹Medical College of Wisconsin Department of Physical Medicine and Rehabilitation, Milwaukee, WI, USA

²Medical College of Wisconsin Department of Orthopaedic Surgery, Milwaukee, WI, USA

Introduction

- Injuries to the elbow and shoulder are common among adolescent baseball players and are associated with extrinsic and intrinsic factors, including poor biomechanics and sports specialization
- Traditional motion analysis was used to identify relationships among pitching biomechanics, pitching history, and injury patterns within a group of adolescent pitchers

Methods

- Data collected from 21 health adolescent (aged 15-17) pitchers
- Subjects underwent one testing session to obtain health and injury history, playing experience, and motion analysis
- Subjects were stratified into groups based on pain and specialization status
- Motion analysis variables were statistically analyzed and compared with health and playing information

Hypothesis

- 1) Pitchers with higher elbow torque will be more likely to report elbow pain
- 2) Pitchers with higher humeral internal rotation torque will be more likely to report shoulder pain
- 3) Pitchers with presence of either elbow or shoulder pain will be more likely to be classified as specialized

Results

- No significant differences between groups in playing experience, injury history, biometrics or peak pitch velocity
- Lead foot position at foot contact significantly different between NS (-8.5±9.4 cm) and S (6.8±11.0 cm) (p = 0.007)
- Timing of max hip-to-shoulder separation angle during pitch cycle (PC) significantly different between the NS (3.4 %PC) and S (12.0 %PC) groups (p = 0.027)

Table 1. T-Test between no pain and pain groups for elbow valgus torque and shoulder internal rotation torque

	NP(n=4)	P(n = 15)	p-value
EVT (Nm)	61.9 ± 9.0	56.8 ± 11.0	0.409
SIRT (Nm)	58.7 ± 11.9	54.6 ± 11.3	0.538
nEVT	0.45 ± 0.08	0.41 ± 0.06	0.309
nSIRT	0.44 ± 0.11	0.40 \pm 0.07	0.433

Table 2. T-Test between non-specialized and specialized groups for elbow valgus torque and shoulder internal rotation torque

	NS (n = 7)	S (n = 12)	p-value
EVT	59.7 ± 8.9	56.8 ± 11.6	0.575
SIRT	60.5 ± 8.7	52.6 ± 11.8	0.141
nEVT	0.42 ± 0.05	0.42 ± 0.08	0.986
nSIRT	0.43 ± 0.06	0.39 ± 0.09	0.308

Conclusion and Next Steps

- Few significant differences demonstrated between pain vs. no pain and specialized vs. non-specialized groups
- Data adds to the growing body of literature describing adolescent pitching biomechanics
- Goal: increase sample size to better characterize injury risk factors and prevent future adolescent pitching injuries

Acknowledgements

 Medical College of Wisconsin Departments of Biostatistics, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, and STiKS Academy