Evaluation of the effect of benzoic acid with or without a direct fed microbial on the performance and health of growing and finishing pigs

D. Humphrey¹, J. Bergstrom², E. Perez-Calvo¹, L. Greiner¹

¹Iowa State University, Ames, IA; ²DSM Nutritional Products North America, Parsippany, NJ; ³DSM Nutritional Products France, Saint Louis Cedex, France

Introduction

• Organic acids and direct-fed microbials present potential physiological benefits to the pig through improved gut health
• Important to understand economic potentials in the form of improved pig performance

Objective

• To determine the effects of benzoic acid, in combination of a direct-fed microbial, on growth performance of growing and finishing swine

Animals:

• 320 crossbred barrows and gilts (DNA 600 X 241; DNA Genetics, Columbus, NE) 35.51 ± 3.75 kg
• PRRS, PEDv, and APP negative
• Sorted into split-sex pens
• Fed a common diet for 11 days pre-trial

Data collection:

• Weights of pigs and feeders captured on days 0, 7, 18, 28, 39, 49, 60, 70, and 81
• Ultrasound conducted on day 81 for backfat and loin eye area at the 10th rib

Treatment allocation:

• Randomized complete blocks equalized by weight
• 8 pigs per pen
• Assigned to 1 of 4 dietary treatments:
 1. Standard commercial (PC)
 2. 85% PC SID Lysine and lowered crude protein (NC)
 3. PC plus 0.3% benzoic acid (BA; VevoVitall, DSM Nutritional Products, Parsippany, NJ)
 4. PC plus 0.3% BA and 0.025% direct fed microbial (BA+DFM; PureGro, DSM Nutritional Products, Parsippany, NJ)

Materials and methods

Statistical analysis

Table 1. Overall (days 0 to 81) effect of dietary treatment on body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), gain-to-feed ratio (G:F), backfat (BF), loin eye area (LEA), removals, and therapeutic interventions

<table>
<thead>
<tr>
<th>Item</th>
<th>PC</th>
<th>BA</th>
<th>BA+DFM</th>
<th>NC</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial BW, kg</td>
<td>35.69</td>
<td>35.66</td>
<td>35.34</td>
<td>35.35</td>
<td>0.210</td>
<td>0.48</td>
</tr>
<tr>
<td>Final BW, kg</td>
<td>123.17</td>
<td>125.64</td>
<td>123.67</td>
<td>122.53</td>
<td>0.871</td>
<td>0.09</td>
</tr>
<tr>
<td>ADG, kg</td>
<td>1.07b</td>
<td>1.11a</td>
<td>1.09ab</td>
<td>1.07b</td>
<td>0.010</td>
<td>0.03</td>
</tr>
<tr>
<td>ADFI, kg</td>
<td>2.78b</td>
<td>2.91a</td>
<td>2.85ab</td>
<td>2.83ab</td>
<td>0.030</td>
<td>0.03</td>
</tr>
<tr>
<td>G:F</td>
<td>0.176a</td>
<td>0.175ab</td>
<td>0.174ab</td>
<td>0.172b</td>
<td>0.001</td>
<td>0.07</td>
</tr>
<tr>
<td>BF, cm</td>
<td>2.07a</td>
<td>2.12ab</td>
<td>2.23b</td>
<td>2.28c</td>
<td>0.051</td>
<td>0.03</td>
</tr>
<tr>
<td>LEA, cm²</td>
<td>43.67</td>
<td>43.33</td>
<td>42.36</td>
<td>42.06</td>
<td>0.601</td>
<td>0.20</td>
</tr>
<tr>
<td>Removals, %</td>
<td>3.75</td>
<td>2.53</td>
<td>0.00</td>
<td>1.25</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td>Therapeutic interventions, %</td>
<td>16.25</td>
<td>8.86</td>
<td>3.75</td>
<td>8.75</td>
<td>-</td>
<td>0.07</td>
</tr>
</tbody>
</table>

1 Least squares means not connected by the same letter are significantly different (P ≤ 0.05)

Results

• Performance data were analyzed in SAS using the following statistical model:
 \[Y_{ijkl} = \mu + T_i + S_j + B_k + e_{ijkl} \]
 Where \(Y_{ijkl} \) is the observed value of the \(l \)th pen of \(k \)th level of sex in \(j \)th block receiving \(i \)th diet; \(\mu \) is the intercept, \(T_i \) is the fixed effect of diet; \(S_j \) is the fixed effect of sex; \(B_k \) is the fixed effect of block; \(e_{ijkl} \) is the random error

• Least squares means were separated using Fisher’s Least Significant Difference test
• Differences in total removals and therapeutic interventions were tested using Fisher’s Exact Test
• Results were considered significant at \(P \leq 0.05 \) and a trend at \(P > 0.05 \) and \(P \leq 0.10 \)

Summary

• Reducing lysine and crude protein levels resulted in poorer gain efficiency and increased backfat
• Benzoic acid resulted in increased gain in growing and finishing pigs from approximately 35 to 125 kg

Acknowledgements

Appreciation is expressed to DSM Nutritional Products for financial support of this research